
STRCPY 1
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

STRCPY
The string copy library functions are vulnerable to buffer overflow attack.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-17

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 11780 bytes

Attack Category • Malicious Input

• Denial of Service

Vulnerability Category • Buffer Overflow

• No Null Termination

Software Context • String Management

Location

Description The string copy library functions are vulnerable to
buffer overflow attack.

strcpy() is the classic buffer overflow attack. Any
variant of strcpy or any routine that behaves like it,
copying a C-string from one buffer to another, is
vulnerable to the same misuse and attack patterns.

The destination buffer must be big enough to hold
the source string plus the null (\0) terminating
character. Even if the destination buffer is large
enough, there is a chance that the source buffer
might not be null terminated and thus might overrun.
Many of the string copy functions do not check
buffer sizes and simply look for a null character
to determine end of input. This gives an attacker
opportunity to send input larger than the buffer size,
overflowing the buffer. The attacker can exploit this
to implement a denial of service (DoS) or buffer
overflow attack.

APIs Function Name Comments

_ftcscpy

_mbscpy Windows

_tcscpy Windows

lstrcpy

lstrcpyA

lstrcpyW Windows

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

STRCPY 2
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

mbscpy AIX, Windows - copies
multibyte character
strings

olestrcpy Windows

StrCpy

StrCCpy

StrCAdd

StrCpyA Windows

StrCpyW Windows

ualstrcpy This function provides
unaligned UNICODE

ualstrcpyA This function provides
unaligned UNICODE

ualstrcpyW This function provides
unaligned UNICODE

wcscpy Windows

Method of Attack An attacker could force input of arbitrarily long
strings to overrun the destination buffer of a
strcpy() call or could potentially force input of an
unterminated string as the source of a strcopy() call.
Either way, a buffer overflow could occur.

A buffer overflow is most dangerous when arbitrary
data can be used to overwrite the stack, heap,
or other sensitive area of memory. When the
boundaries of the destination buffer are overrun,
the contents of the source buffer are copied into
adjoining areas of memory. If the buffer is on the
stack, the most common (and critical) attack point
is the return address of the current subroutine. The
attacker crafts an input string that contains a valid
address. This address is specifically positioned so
that when the destination buffer is overwritten, the
address gets dropped on top of the original return
address for the current routine. Execution continues,
as normal, but when the routine attempts to return
to the calling subroutine, it must read the return
address from the stack. However, since the attacker
overwrote that address with his or her own address,
the routine jumps to the wrong place and suddenly
the computer is under control of the attacker. If
the attacker has crafted the attack properly, he or
she will have other code waiting in the address he
specified that can begin doing nasty things.

In a heap overflow situation, the attacker overwrites
a buffer that is stored in heap memory. Similar
address overwriting can occur, but this time the
target address is commonly part of a "virtual jump

STRCPY 3
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

table" normally associated with C++ objects.
Polymorphic objects commonly carry virtual
function tables along with them that point to the
routines associated with operating on the objects
data. By overwriting that jump table, the attacker
can control where the program will jump when one
of those methods is called. This is becoming more
common as the popularity of C++ increases for
writing network-centric code.

Exception Criteria There is usually no issue when used to copy const
strings into variables.

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Any context
where a string
is to be copied.

Never use
strcpy().
Replace
strcpy() and
similar routines
with a bounded
call. There are
a variety of
options for this.

Effective
if correctly
implemented.
Choose the
solution variant
that makes it
easiest to avoid
careless errors.

On Windows Replace the
call strcpy(d,
s) with the
strsafe.h routine
StringCbCopy(d,
s,
BUFFSIZE_D),
which takes
a buffer size
in *bytes*, or
StringCchCopy(d,
s,
BUFFSIZECHARS_D)
which takes a
buffer size in
characters,
which becomes
important if
you are using
wide Unicode
characters.
When using
Unicode, extra
care must be
taken to specify
the buffer
size using the
correct units.

Effective
if correctly
implemented
but requires
caution when
using Unicode.

STRCPY 4
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

On BSD UNIX
systems with
strlcpy

Replace the call
strcpy(d, s) with
strlcpy(d, s,
BUFFSIZE_D).
This checks
the bounds and
prevents the
buffer overrun.
The strlcpy
routine operates
like strncpy()
but takes care
to always null
terminate the
destination
string. This
thwarts the
attack where the
string is exactly
the size of the
buffer.

Effective
if correctly
implemented.

Finally, on
any remaining
system
(including any
other UNIX)

At a minimum
replace
strcpy(d, s) with
strncpy(d, s,
BUFFSIZE_D).
This will
properly check
the bounds
and prevent
strncpy() from
overflowing
the buffer.
On systems
with strlcpy(),
use that as a
replacement

If the buffer
d is allocated
statically or
on the stack,
one can use
sizeof(d)
in place of
BUFFSIZE_D.
However, if d
is a pointer to
the heap, then
sizeof(d) will
not work and
BUFFSIZE_D
must be known

Effective
if correctly
implemented.

STRCPY 5
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

through other
means.

Any context
where a string
is to be copied.

Consider
banning all
use of strcpy()
by making it
impossible to
compile. In a
common header
for your code
base, define the
following:
#define strcpy
Unsafe_strcpy
This way, if
any developer
attempts to
use strcpy(), it
will generate a
compile error.

Effective at
avoiding use of
strcpy()

Any context
where a string
is to be copied.

As an absolute
last resort, you
can consider
doing the
following
dynamic checks
during runtime:
To properly
use lstrcpy() or
any strcpy(),
you must do the
following:
1. Verify that
dest is not
NULL
2. Verify that
strlen(source) <
SIZE_OF_DEST
3. If using wide
characters,
SIZE_OF_DEST
must be in
correct units
(i.e., # wide
chars, not
bytes)
4. Verify that
source is null
terminated

Effective but
more complex
and error-prone.

Signature Details The strcpy() function is called.

Examples of Incorrect Code char str1[10];

STRCPY 6
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

char str2[]="abcdefghijklmn";
strcpy(str1,str2);

Examples of Corrected Code /* If truncation is ok, the
following works. */

const int BUFFER_SIZE = 10;
char str1[BUFFER_SIZE];
char str2[]="abcdefghijklmn";
/* in this case we know str1
isn't null, but in general we
should check to confirm that. */

/* strncpy() always works, but
on systems such as Windows or BSD
Unix, there are better choices. */
strncpy(str1,str2,
BUFFER_SIZE-1); /* limit number of
characters to be copied */
str1[BUFFER_SIZE-1] = '\0'; /
* guarantee result will be null
terminated */

/* If truncation is
unacceptable... */

const int BUFFER_SIZE = 10;
char str1[BUFFER_SIZE];
char str2[]="abcdefghijklmn";

/* verify buffer big enough to
hold string and null termination
*/
if ((str1 != 0) && (strlen(str2)
< BUFFER_SIZE)) {
strncpy(str1,str2, BUFFER_SIZE);
} else {
/* handle error */
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X

• Howard, Michael & LeBlanc, David C. Writing
Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002, ISBN: 0735617228, pg. 82.

• man page for strlcpy()

• http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/winui/winui/
windowsuserinterface/resources/strings/

usingstrsafe2

Recommended Resource

Discriminant Set Operating System • Any

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafe
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafe
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafe
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafe

STRCPY 7
ID: 848-BSI | Version: 3 | Date: 5/16/08 2:39:36 PM

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

